1. Функция y=f(x) задана на промежутке [-6;-1] и является возрастающей на области определения. Расположите значения функции $f(-\sqrt{19}),\ f(-\sqrt{10}),\ f(-\sqrt{26})$ в порядке убывания.

1)
$$f(-\sqrt{19}), f(-\sqrt{26}), f(-\sqrt{10})$$
 2) $f(-\sqrt{10}), f(-\sqrt{19}), f(-\sqrt{26})$
3) $f(-\sqrt{26}), f(-\sqrt{19}), f(-\sqrt{10})$ 4) $f(-\sqrt{26}), f(-\sqrt{10}), f(-\sqrt{19})$
5) $f(-\sqrt{10}), f(-\sqrt{26}), f(-\sqrt{19})$

2. Функция y=f(x) задана на множестве действительных чисел и является убывающей на области определения. Среди ее значений $f(6,62); f\left(\frac{51}{7}\right); f\left(\frac{4\pi}{3}\right); f(\sqrt{26});$ $f(4\pi)$ укажите наибольшее.

1)
$$f(6,62)$$
 2) $f\left(\frac{51}{7}\right)$ 3) $f\left(\frac{4\pi}{3}\right)$ 4) $f(\sqrt{26})$ 5) $f(4\pi)$

3. Известно, что наименьшее значение функции, заданной формулой $y = x^2 + 8x + c$, равно -3. Тогда значение c равно:

4. Сумма наибольшего и наименьшего значений функции

$$y = (3\sin 2x + 3\cos 2x)^2$$

равна:

5. Функция y = f(x) определена на множестве действительных чисел. Известно, что $f'(x) = (x-2)^3(x-7)^2(x+5)$. Найдите произведение точек экстремума функции y = f(x).

6. Найдите произведение точек минимума функции $f(x) = \frac{x^4}{4} + \frac{x^3}{3} - 15x^2$.

7. Дана функция $f(x) = -\frac{x^4}{4} + 2x^3 + 10x^2 + \lg 4$. Найдите значение выражения $a\cdot n$, где a — наибольшее целое отрицательное число из промежутков возрастания данной функции, n — количество всех натуральных чисел из промежутков возрастания данной функции.

8. Найдите наибольшее значение функции $f(x)=\frac{x^3}{3}+0,5x^2-12x-\frac{2}{3}$ на отрезке [–5; 1].